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A N D O  approximate procedure based on the indirect intrinsic ab initio localization method of 
yon Niessen is developed. It is shown that only when the N D O  approximations are introduced at the 
two electron level, expressior~s are obtained which are the charge density counterpart  of  those found 
in the approximate energy localization methods. The results of  these two methods are quite similar 
both in the C N D O  and INDO approximations.  The indeterminacies observed in the C N D O  localization 
for unsaturated systems and for molecules with two or three lone pairs on the same atom, are removed 
by localizing up to an I N D O  level. The approximate charge density localization is however computa-  
tionally much  easier than the approximate energy localization method and should be more appropriate 
in LMO studies of  large organic molecules. 
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1. Introduction 

The canonical molecular orbitals, obtained by solving the molecular Hartree- 
Fock-Roothaan equations [1] are generally delocalized over the entire molecular 
framework and can hardly be visualized in terms of "classical chemical" concepts 
such as inner shells, lone pairs and two-or three center bonds. However, Fock [2] 
showed that a single determinantal wave function is invariant with respect to a 
unitary transformation among the molecular orbitals, so that the possibility 
exists of finding an appropriate unitary matrix converting the canonical orbitals 
into a new set of orbitals which are localized in well-defined regions of the molecule. 
This should bridge the gap between the traditional chemical concepts and the 
quantum mechanical formulation of the problem. Such transformations are 
currently known as "localization procedures". 

In the Edmiston and Rfidenburg theory [3-531, "Energy localized MO's" 
(ELMO's) are obtained by maximizing the sum of the orbital self-repulsion 
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energies. This method has since then been successfully approached up to a C N D O  
[61, [71 and an INDO [81 level, respectively b y  Trindle and Sinanoglu [9] and 
England and Gordon [10] 2. Recently, von Niessen [11], [12] showed that the 
substitution of  the ri-2 ~ separation function in the two electron integrals by the 
6 ( r l - r 2 )  function furnished "Density Localized MO's"  (DLMO's)  which are 
very similar to the ELMO's;  the one electron "charge density overlap, integrals" 
so obtained are however much more easily and rapidly calculated than the two- 
electron repulsion integrals in the ER procedure. 

In this paper we propose a new indirect intrinsic approximate density localiza- 
tion method avoiding the tedious evaluation of two-electron integrals in the 
approximate ER methods. 

2. The CNDO- and INDO-Approximations to the Density Localization Method 

Von Niessen's density localization method [111 is based upon the minimaliza- 
tion of  the sum D'  of  the one electron interorbitalar charge density overlap 
integrals: 

oct occ occ or 
D ' =  ~ E [i2j21 = E ~ S ~2(r)~](r) dr- (1) 

i<j i<j 

The transformation of the set of CMO's  {Oi} into the set of  LMO's {~'~} is achieved 
by performing successive (2 x 2) rotations between the CMO's  minimizing D' 
for the two-dimensional case until invariance of (1) is obtained. The rotation angle 
0 is commonly chosen to be the one which, of the four angles e, c~ + 7r/2, c~ + re, 
~'+ 3rc/2 lies between 0 and ~z/2, ~ being defined as 

Bij 
tan 4c~- (2) 

Aij 

with A 0 = 3[i2j 2] - �88 - �88 (3) 

B 0 " =  [ i 3 j ] -  [ i j31 . 

In our method, the quantities A• and Bij" will be approximated up to a NDO 
level, our localization function implying the maximalization of 

ocr occ 
D = ~ [i2i21 ~ 2 [ i41 (4) 

i i 

which is equivalent to the minimization of D'3. Actually, two basic options are 
possible in the N D O  approximations for Ai/, BO" and D. 

The integral [i2j 2] can be written as a two electron integral which we shall 
denote as  [i21]j21 with the delta function 6(r I - r  z) as operator 

1-i2]]j2] = [ 2 2 ,I//i I]l//j I = j ' ~  i / / 2 ( r l ) l S ( r l  - -  r 2 ) l l / 2 ( r 2 ) d r l  d r  2. ( 5 )  

2 Hereafter abbreviated respectively as TS and EG. 
o~oee 

3 ~ [i2j 2] indeed is constant  for an orthogonal t ransformation among the MO's. 
i j 
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Introducing the LCAO expansion, we obtain 

[i211j2] = E  E E E Cui Cvl Czi  Cai [12v[I)]'~ (6) 
/~ v ). a 

where/1, v, )~ and a stand for the atomic basisfunctions. We now clearly can start 
our approximations, either at the level of the two-electron integrals [/~vll2a]; 
i.e. before integrating out the delta function (option A) or at the final one-electron 
integral level [~tv2a] (option B). 

In the framework of the NDO-approximations, we clearly see that, due to the 
higher permutational symmetry of the [/~v2a] integrals as compared to their 
two-electron analogues [t~vllAa ], the number of one-electron integrals retained in 
method B will be considerably higher than the number of two-electron integrals 
retained in method A. It is obvious that only option A is justified on a physical 
basis and will have its energy localization counterpart. 

Starting from the two-electron integral expressions for Aij, Bij and D and intro- 
ducing the usual CNDO-approximations [6], [7], we obtain: 

A B 
A i j = E  E ~AB E E C 1 2 2 2 2 

A B A a 
A B 

.~. Bij= E E ~a, Z Z (cZl- C2j) C~iCoj (7) 
A B 2 a 
occ A B 

.=EEE A.EE Cj. iCai  
i A B 2 a 

with 
2 2 ~AB = [SASB] (8) 

computed over valence-s-functions in order to satisfy orientational invariance 
requirements. 

The theoretica~ evaluation of these integrals in terms of STO's will be discussed 
in Appendix 1. 

Introductory results with the CNDO approximation indicated that, in agree- 
ment with observations made by TS [9], EG [10] and Newton et al. [13], some 
indeterminacies remained in the localization procedure for unsaturated systems 
and for cases where two or three lone pairs are localized on the same atom 4. It 
can be proved (Section 3) that a treatment up to an INDO level removes these 
indeterminacies. 

The appropriate INDO approximations to the [#vll2a ] integrals are basically 
the same as in the CNDO method, except that one-center integrals [#vii#v] with 
/~ r v are also retained. The resulting expressions for Aij, BO" and D are: 

A / j =  E [5[4] [3t'-'2 t'~2 1 4 1 4 \2~-~)d~J)~J-4C),i-gC21 ) + E .~  [ 220-2] (3CziCxjC~iC~j 
A 

2 ~ a ~ 3t'~2 1"2 31'2 t~2 3_t",2 1"2 "~ 
~- 2,,~2iv. aj -- 4.,,.~i~.~ai -- 4.~...).j~... a j l ;  

4 In agreement with the CNDO energy localization method, lone pair and double and triple bond 
LM0's resulting from CNDO-density localization invariably are of the a, ~ type. 
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A B 
- } - ~ , Y ~ A B Y ~ . v  ( C C  --  ~-C12 2 - -  1 t ~ 2  f~2 j_  l f ~ 2  t'~2 ] x C)Li-.~jCr ,+--2iCai 4'~2j'~aj . 2~..F.Zi~aj] 

Ag:B ), 

( C ~ -  Ca j) + 3 ~ ~ [220 -2] C~C~j (C2~- C~j) 
A ACa 

A B 

ACB A a 

3. Indeterminacies in N D O  Localizations 

Let us first consider a molecule with n A lone pairs r located on the same atom 
A. The partial localization function DA, defined as 

n A  

DA= ~ S~ ~b~(rl)f(r12)r dr1 dr 2 (10) 
i - -1  

where f(r12 ) denotes a general separation function, becomes in the CNDO 
approximation (assuming perfectly localized LMO's) 

nA A A 

DA=~AA Z E Z C2iC2'~-HA ~AA (11) 
i = 1  k m 

where ~AA stands for the spherically averaged one center integral over valence-s- 
functions. 

~AA = S ~  zZA(rl)f(r12)zZA(r2) drldr2 (12) 

After an orthogonal transformation among the Yt a lone pairs, new LMO's r and new 
orbital coefficients C~ are obtained 

?1 A 

~/'-- ~ Tik0k (13) 
k = l  

n A  

G,= T.G. 
r = l  

The transformation matrix T being an orthogonal matrix, the new partial localiza- 
tion function 

n A  

D'a=~AA Z Z Z C/,2Cm~ (14) 
i = 1  k rn 

reduces to 

D ' A = n A  ~AA=L)A .  ( 1 5 )  

Thus, within the assumption of perfect localization the lone pair CNDO-LMO's 
are not univocally determined; as a particular case a, n type and equivalent lone 
pairs lead to the same partial localization value. 

However, if we perform our localization up to an INDO level it is easily 
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proved that the contribution of equivalent lone pairs to the localization function 
is greater than that of their a, rc type counterparts. 

In the case of the HF molecule, for example, locating the hydrogen atom at 
the origin of the coordinate system and the fluorine atom on the positive x-axis, 
the a, rc lone pairs are given by 

~ = ( ~ s + ~  P~ with 0<co< 1 (16) 

0" =p~ 

their transformation to three equivalent lone pairs ~ ,  ~, ,  ~,, is achieved by the 

1 

1 
I/IT, z 

1 

following matrix relation 

2 0 ~, 

1 1 

1 1 

(17) 

If we now perform our localization up to an INDO level, starting from the explicit 
expressions for the partial localization functions in both cases 

eq.lp 2 2 DA =3[0~][0~] (18) 
2 2 2 2 D] '~ = [0o11~] + 2[O~UO~] (19) 

we obtain, in the case of density localization 

ADA=DeAq'tP-- D~A'~=86o4 ~ (20) 
15~ 

where N denotes the radial part of the charge density integral and has always a 
positive value. 

In the case of the energy localization method, we obtain 

ADA = 8co4(~G a -@sF 2) (21) 

where G 1 and F 2 a r e  the Slater-Condon parameters [8]; due to their relative 
magnitude, AD a will here also always be positive (0.2865 e) 4 a.u. in the case of a 
fluorine atom). INDO localization thus not only removes the CNDO inde- 
terminacies but also favours the equivalent lone pairs picture in agreement with 
ab initio results [12]. 

Let us now discuss the case of unsaturated systems, e.g. ethylene. Considering 
this molecule with the CC bond along the x-axis, the (XY) plane being the molecular 
plane. The CC double bond can be described in terms of a, rE or bent (~) bonds 
(noted respectively as ~ and 0n or ~, and ~,,); these are related through the 
following matrix relation 
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1 [q  (22) 

Completely analogously to the lone-pairs case it is easily shown that in the CNDO 
approximation the localization function for the CC double bond becomes 

D ~' ~ = D e' ~' = ~cc + ~clc2 (23) 

where ~clc2 denotes the spherically averaged two center integral. In the case of a 
triple bond, e.g. for acetylene, we have 

Da,~,~ , DZ, Z,,< 3 = = ~(~CC + ~ClC2)" (24) 

Thus, the CNDO localization clearly does not distinguish between the two 
descriptions. 

If  the localization is performed up to an INDO level, we obtain in the case of 
charge density localization 

- for ethylene A D = D  ~ '~ ' -D . . . .  ----~4 co4 
5 x  

16 e) 4 (25) 
- for acetylene AD=D~'~"<-D""~" '~ ' -  ~1. 

15 rc 

is the positive radial part of the charge density overlap integral and co is the s 
contribution of  Ca and C2 in the a orbital 

l~/a = co(S 1 -~ $2) -}- ~22 ~/1 -- 2(O 2 (P~I -- P~) .  (26) 

In the case of the energy localization method, we obtain: 

for ethylene A D = 4co*(�89 1 _ 1 F 2  ) = 0.3292094 (27) 

for acetylene AD = 16co4(}G 1 _ 7_~_F 2) = 0.4375o94 (28) 

Here again, INDO localization not  only removes the CNDO degeneracies but 
yields bent bonds in agreement with ab initio results [12], [14], [15]. 

4. Results - Comparison with Other Methods 

A comparison of the CNDO-charge density LMO's for several molecules 
with the CNDO-energy localization results of e.g. Trindle and Sinanoglu [9] 
reveals that all LMO coefficients are identical up to 1 �9 10 -4. Also the LMO's  for 
ethylene and benzene (Table 1) obtained by our INDO density localization theory 
and the INDO energy localization procedure of England and Gordon [10] 
are quite similar. For  ethylene and other simple unsaturated molecules ~ bonds 
are obtained instead of a a, rc system and for benzene a K6kule structure, consisting 
of three C--C a bonds and three pairs of equivalent banana bonds is found. 

These results are in close agreement with ab initio conclusions [16]. 
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Table 1. comparison between INDO-energy [A] and INDO-charge density [B] localized CH and 
CC bond orbitals in ethylene and benzene b 

Molecule CH Bond" CC' ~ Bonds" CC' o Bond" 
Atomic 
Orbital A B A B A B 

H s 0.7050 0.7052 
H ~ Y  H Cs 0.3996 0.3943 0.3296 0.3347 
k3\ ~Z.~zzzz~ Cp~ 0.3283 0,3338 -0.3760 -0.3712 

Cpr 0.4760 0.4759 0. 0 
/ c ,  ," c \ •  Cw 0 0 +_0.5000 +-0.5000 
? \ C: 0.3296 0.3347 

03 60 
C~, 0 0 

Eth' 'lene C~,, +_ 0.5000 +- 0.5000 

H c~-r-2"~c H 
\ 

< 
N N 

Benzene 

H, 0.7108 0,7112 
C~ 0,3834 0.3791 0.3106 0.3170 0,4200 0.4135 
Cp~ 0.5818 0.5838 0.3880 0.3835 0.5627 0.5665 
Cpr -0.0059 -0,0101 -0.0212 -0.0199 0.0416 0.0494 
Cp~ 0 0 +0.4553 ___0.4547 0 0 
C's 0.3106 0.3170 0.4200 0.4135 
C'p~ -0.3880 -0.3835 -0,5627 -0.5667 
C~y -0.0212 -0.0199 0.0416 0.0494 
C'p~ +0.4553 __+0,4547 0 0 

Tailing contributions from atoms not involved in the CH and CC bonds are not given. 
b Experimental geometries for ethylene [19] and benzene [20], [21] are used in the calculation. 

In  the case o f  molecules  where  two or  more  lone pa i rs  are  local ized on the 
same a t o m  the resul t ing I N D O - D L M O ' s  were in every case equivalent  lone  pa i rs  
and not  their  a, n type  coun te rpar t s ,  in agreement  wi th  the  a rguments  deve loped  
in Sect ion 3. 

5. Conclusions 

A new N D O - d e n s i t y  loca l iza t ion  p rocedure  which  gives results  very s imi lar  
to  the C N D O  and  I N D O  energy loca l iza t ion  me thods  is developed.  Inde te r -  
minacies  in the C N D O - L M O ' s  are  suppressed  when work ing  at  an I N D O  level. 
The  m e t h o d  is c o m p u t a t i o n a l l y  easy and  r ap id  and  is a sui table  t0ol  for  the  s tudy  
o f  L M O ' s  in large o rgan ic  molecules .  The  intr insic  [ t 7 ]  cha rac te r  o f  the  m e t h o d  
is an ext remely  i m p o r t a n t  p r o p e r t y  as c o m p a r e d  to the  external  p rocedures ,  which  
a l though  c o m p u t a t i o n a l l y  still easier,  require  p reconcep t ions  o f  the  final L M O ' s .  
Our  m e t h o d  has  recent ly  been successfully app l ied  in a L M O - s t u d y  o f  di rect ly  
bonded  1 aC_ H nuclear  spin-spin  coupl ing  cons tan ts  and  C - H  b o n d  dis tances  [ 18]. 

Appendix. Evaluation of Charge Density Overlap Integrals in a STO-Basis Set 
One- and two center charge density overlap integrals in a STO-basis set represent a new type of 

integral whose evaluation is given here: 

1. One Center Integrals 

Considering first and second row elements, these integrals can be classified into four types [s2s2], 
[s2pZ], [p2p2] and [p,,p,2]. Starting from the definition of a STO [22] 
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rb 
ra 

A B 

Fig. 1. Two center coordinate system 

Z.u. (r, O, ~)=(2~)"+1/2r"-1 e -~-" Yt~ (0 ,  4)) (29) 
~f(2n)! 

where the Yu. are the spherical harmonics in real form, it is easily seen that these integrals can be 
factorised in a radial and an angular part. If equal orbital exponents are taken for s and p orbitals, the 
radial part ~ of the integrals reduces to 

~3 ( 4 n -  2) ! 
=24._ 4 ~ (30) 

whereas the angular integrals are given by 

1 2 2 2 2 [ Yoo Y~o] = [ Y~o Yl~] =4~ 

9 2 2 = - -  (31) 
[Y, mY,~] 20,~ 

3 2 2 ~ - -  
[ Yu"Yun'] 207r 

where Y~ and Y~,., denote the px, py and pz functions (m ~ m'). 

2. Two Center Integrals 

The evaluation of  these integrals over valence-s-functions is performed analogously to the compu- 
tation of  overlap integrals by Mulliken et al. [23]. 

If R denotes the distance between the atomic centers A and B0 we have (cf. Fig. 1) 

1 (2{1) 2"*+1 (2{2) 2"2+1 
r r 2n*-2r a"~-2e-Zgir~162 (32) 

CAB J a b 
4zc (2nl)! (2n2)! 

or, introducing the prolate spheroidal coordinates (p, v, ~) defined as 

r a q- r b /z= 
R 

r a - -  r b 
v = . - -  (33) 

R 

�9 a = ~b = 

1 1 
~AB ~ 1 2 n l  + 1~2n~ + 1 R 2 (  . . . . .  ) -  1 

~z (2nl)! (2nz)! 

/~=1 v = 1 

where c~ and fl are given by 

(,/A -}- V) 2n l  -- 1 ( ~  __ v ) 2 n 2  - 1 e-  (~ + # ) ~ e - ( : -  #> dpdv 

(34) 
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Defining further 

N a = 2 n  1 - 1 

NB=2n2--  1 

we have according to the binomial expansion 

1 ~12"~+1~z 2"~+1 N~ N, 

rc (2nl)!{2n2)! v-o q=o u=l 

(36) 

+1 
V N A + N B _ p _ q  

v= - 1  

e -(~-~> dr. (37) 

These integrals are precisely the A and B integrals of Mulliken et al. [23] so that we finally obtain 

1 ff12nl + lff2 2 n z + l  NA N~ 
R 2("'+"~)-1 ~ ~ CP C~ ()N"-qA('+~)B(~-P) (38) 

CAn ~ (2nl)!(2n2)! v=oq=o sa u . -  p+~ N~+~-p-q-  
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